Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biochemistry ; 63(1): 42-52, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146842

RESUMO

Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Å resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates.


Assuntos
Difosfatos , Solanum tuberosum , Fosfatos de Inositol , Ácido Fítico
2.
Biochem J ; 480(6): 433-453, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36896917

RESUMO

Myo-inositol tris/tetrakisphosphate kinases (ITPKs) catalyze diverse phosphotransfer reactions with myo-inositol phosphate and myo-inositol pyrophosphate substrates. However, the lack of structures of nucleotide-coordinated plant ITPKs thwarts a rational understanding of phosphotransfer reactions of the family. Arabidopsis possesses a family of four ITPKs of which two isoforms, ITPK1 and ITPK4, control inositol hexakisphosphate and inositol pyrophosphate levels directly or by provision of precursors. Here, we describe the specificity of Arabidopsis ITPK4 to pairs of enantiomers of diverse inositol polyphosphates and show how substrate specificity differs from Arabidopsis ITPK1. Moreover, we provide a description of the crystal structure of ATP-coordinated AtITPK4 at 2.11 Šresolution that, along with a description of the enantiospecificity of the enzyme, affords a molecular explanation for the diverse phosphotransferase activity of this enzyme. That Arabidopsis ITPK4 has a KM for ATP in the tens of micromolar range, potentially explains how, despite the large-scale abolition of InsP6, InsP7 and InsP8 synthesis in Atitpk4 mutants, Atitpk4 lacks the phosphate starvation responses of Atitpk1 mutants. We further demonstrate that Arabidopsis ITPK4 and its homologues in other plants possess an N-terminal haloacid dehalogenase-like fold not previously described. The structural and enzymological information revealed will guide elucidation of ITPK4 function in diverse physiological contexts, including InsP8-dependent aspects of plant biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Difosfatos , Fosfatos de Inositol , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Ácido Fítico , Trifosfato de Adenosina
3.
PLoS One ; 17(8): e0272015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044476

RESUMO

Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2-8.5 with maxima at 3, 4.5-5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.


Assuntos
6-Fitase , Acinetobacter , Monoéster Fosfórico Hidrolases , 6-Fitase/química , 6-Fitase/metabolismo , Acinetobacter/química , Acinetobacter/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Ácido Fítico , Microbiologia do Solo , Especificidade por Substrato
4.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683026

RESUMO

AppA, the Escherichia coli periplasmic phytase of clade 2 of the histidine phosphatase (HP2) family, has been well-characterized and successfully engineered for use as an animal feed supplement. AppA is a 1D-6-phytase and highly stereospecific but transiently accumulates 1D-myo-Ins(2,3,4,5)P4 and other lower phosphorylated intermediates. If this bottleneck in liberation of orthophosphate is to be obviated through protein engineering, an explanation of its rather rigid preference for the initial site and subsequent cleavage of phytic acid is required. To help explain this behaviour, the role of the catalytic proton donor residue in determining AppA stereospecificity was investigated. Four variants were generated by site-directed mutagenesis of the active site HDT amino acid sequence motif containing the catalytic proton donor, D304. The identity and position of the prospective proton donor residue was found to strongly influence stereospecificity. While the wild-type enzyme has a strong preference for 1D-6-phytase activity, a marked reduction in stereospecificity was observed for a D304E variant, while a proton donor-less mutant (D304A) displayed exclusive 1D-1/3-phytase activity. High-resolution X-ray crystal structures of complexes of the mutants with a non-hydrolysable substrate analogue inhibitor point to a crucial role played by D304 in stereospecificity by influencing the size and polarity of specificity pockets A and B. Taken together, these results provide the first evidence for the involvement of the proton donor residue in determining the stereospecificity of HP2 phytases and prepares the ground for structure-informed engineering studies targeting the production of animal feed enzymes capable of the efficient and complete dephosphorylation of dietary phytic acid.


Assuntos
6-Fitase , Proteínas de Escherichia coli , 6-Fitase/metabolismo , Fosfatase Ácida/metabolismo , Animais , Fosfatos de Dinucleosídeos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácido Fítico/metabolismo , Estudos Prospectivos , Prótons
5.
Plant Commun ; 3(2): 100305, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35529950

RESUMO

Grain phytate, a mixed metal ion salt of inositol hexakisphosphate, accounts for 60%-80% of stored phosphorus in plants and is a potent antinutrient of non-ruminant animals including humans. Through neofunctionalization of purple acid phytases (PAPhy), some cereals such as wheat and rye have acquired particularly high mature grain phytase activity. As PAPhy activity supplies phosphate, liberates metal ions necessary for seedling emergence, and obviates antinutrient effects of phytate, its manipulation and control are targeted crop traits. Here we show the X-ray crystal structure of the b2 isoform of wheat PAPhy induced during germination. This high-resolution crystal structure suggests a model for phytate recognition that, validated by molecular dynamics simulations, implicates elements of two sequence inserts (termed PAPhy motifs) relative to a canonical metallophosphoesterase (MPE) domain in forming phytate-specific substrate specificity pockets. These motifs are well conserved in PAPhys from monocot cereals, enzymes which are characterized by high specificity for phytate. Tested by mutagenesis, residues His229 in PAPhy motif 4 and Lys410 in the MPE domain, both conserved in PAPhys, are found to strongly influence phytase activity. These results explain the observed phytase activity of cereal PAPhys and open the way to the rational engineering of phytase activity in planta.


Assuntos
6-Fitase , 6-Fitase/química , 6-Fitase/genética , 6-Fitase/metabolismo , Animais , Grão Comestível/química , Grão Comestível/genética , Germinação , Ácido Fítico/análise , Ácido Fítico/metabolismo , Triticum/genética
6.
Microbiology (Reading) ; 167(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34825885

RESUMO

Ferritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.


Assuntos
Ferritinas , Ferro , Synechococcus , Animais , Domínio Catalítico , Ceruloplasmina/química , Ceruloplasmina/genética , Ferritinas/química , Ferritinas/genética , Ferro/metabolismo , Minerais/química , Oxirredução , Synechococcus/química
7.
Drug Discov Today ; 26(10): 2377-2383, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33872800

RESUMO

Targeting protein-protein interactions (PPI) is a key focus in the development of new and emerging small-molecule therapeutics. Shallow interacting surfaces can render PPI targeting notoriously difficult. This leaves many therapeutically captivating targets 'undruggable'. Despite these challenges, there has been extraordinary progress circumventing this issue by hijacking the ubiquitin proteasome system (UPS) to target selected substrates for destruction using target-based degradation (TBD) strategies, including bifunctional molecules known as proteolysis-targeting chimeras (PROTACs). In this review, we discuss some of the most recent innovative concepts emerging from PROTAC research and related technologies.


Assuntos
Desenvolvimento de Medicamentos/métodos , Terapia de Alvo Molecular , Proteínas/metabolismo , Descoberta de Drogas/métodos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
8.
J Med Chem ; 64(7): 3813-3826, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724834

RESUMO

Src homology 2 domain-containing inositol phosphate phosphatase 2 (SHIP2) is one of the 10 human inositol phosphate 5-phosphatases. One of its physiological functions is dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4,5)P3. It is therefore a therapeutic target for pathophysiologies dependent on PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Therapeutic interventions are limited by the dearth of crystallographic data describing ligand/inhibitor binding. An active site-directed fluorescent probe facilitated screening of compound libraries for SHIP2 ligands. With two additional orthogonal assays, several ligands including galloflavin were identified as low micromolar Ki inhibitors. One ligand, an oxo-linked ethylene-bridged dimer of benzene 1,2,4-trisphosphate, was shown to be an uncompetitive inhibitor that binds to a regulatory site on the catalytic domain. We posit that binding of ligands to this site restrains L4 loop motions that are key to interdomain communications that accompany high catalytic activity with phosphoinositide substrate. This site may, therefore, be a future druggable target for medicinal chemistry.


Assuntos
Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Fosfatos de Inositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Ligação Proteica
9.
Biochem J ; 477(14): 2621-2638, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32706850

RESUMO

Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called 'high-energy' phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica/métodos , Fosfatos de Inositol/análise , Mesilatos/química , Mutação , Radioisótopos de Fósforo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
10.
Dalton Trans ; 49(5): 1545-1554, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930254

RESUMO

Ferritins are multimers comprised of 4 α-helical bundle monomers that co-assemble to form protein shells surrounding an approximately spherical internal cavity. The assembled multimers acquire Fe2+ from their surroundings by utilising channels that penetrate the protein for the transportation of iron to diiron catalytic centres buried within the monomeric units. Here oxidation of the substrate to Fe3+ is coupled to the reduction of O2 and/or peroxide to yield the precursor to a ferric oxy hydroxide mineral that is stored within the internal cavity. The rhombic dodecahedral quaternary structure results in channels of 4-fold and 3-fold symmetry, located at the vertices, which are common to all 24mer-ferritins. Ferritins isolated from higher eukaryotes have been demonstrated to take up Fe2+via the 3-fold channels. One of the defining features of ferritins isolated from prokaryotes is the presence of a further 24 channels, the B-channels, and these are thought to play an important role in Fe2+ uptake in this sub-family. SynFtn is an unusual ferritin isolated from the marine cyanobacterium Synechococcus CC9311. The reported structure of SynFtn derived from Fe2+ soaked crystals revealed the presence of a fully hydrated Fe2+ associated with three aspartate residues (Asp137 from each of the three symmetry related subunits) within each three-fold channel, suggesting that it might be the route for Fe2+ entry. Here, we present structural and spectro-kinetic data on two variants of SynFtn, D137A and E62A, designed to assess this possibility. Glu62 is equivalent to residues demonstrated to be important in the transfer of iron from the inner exit of the 3-fold channel to the catalytic centre in animal ferritins. As expected replacing Asp137 with a non-coordinating residue eliminated rapid iron oxidation by SynFtn. In contrast the rate of mineral core formation was severely impaired whilst the rate of iron transit into the catalytic centre was largely unaffected upon introducing a non-coordinating residue in place of Glu62 suggesting a role for this residue in release of the oxidised product. The identification of these two residues in SynFtn maps out major routes for Fe2+ entry to, and exit from, the catalytic ferroxidase centres.


Assuntos
Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Compostos Ferrosos/metabolismo , Células Procarióticas/metabolismo , Synechococcus/química , Biocatálise , Domínio Catalítico , Ceruloplasmina/química , Espectroscopia de Ressonância de Spin Eletrônica , Ferritinas/química , Ferritinas/isolamento & purificação , Compostos Ferrosos/química , Modelos Moleculares , Células Procarióticas/química , Synechococcus/metabolismo
11.
J Biol Chem ; 295(51): 17602-17623, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454001

RESUMO

Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Ferro/química , Estresse Oxidativo , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sideróforos/química , Sideróforos/metabolismo
12.
J Biol Chem ; 295(51): 17724-17737, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454010

RESUMO

Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium longum/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Filogenia , Ácido Fítico/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
13.
Proc Natl Acad Sci U S A ; 116(6): 2058-2067, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659147

RESUMO

The gene encoding the cyanobacterial ferritin SynFtn is up-regulated in response to copper stress. Here, we show that, while SynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2 with the di-Fe2+ center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+ form. Iron-O2 chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+ form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2 reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2 bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron-O2 chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not.


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Oxigênio/química , Peróxidos/química , Proteínas/química , Ceruloplasmina/química , Transporte de Elétrons , Ferritinas/química , Ferro/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Relação Estrutura-Atividade
14.
Plant Cell ; 30(12): 3038-3057, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429223

RESUMO

Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-ß-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.


Assuntos
Glicosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/metabolismo , Glicosiltransferases/genética , Pentosiltransferases/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
15.
Chemistry ; 24(67): 17677-17680, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30207403

RESUMO

We have screened small molecule libraries specifically for inhibitors that target WWP2, an E3 ubiquitin ligase associated with tumour outgrowth and spread. Selected hits demonstrated dose-dependent WWP2 inhibition, low micromolar IC50 values, and inhibition of PTEN substrate-specific ubiquitination. Binding to WWP2 was confirmed by ligand-based NMR spectroscopy. Furthermore, we used a combination of STD NMR, the recently developed DEEP-STD NMR approach, and docking calculations, to propose for the first time an NMR-validated 3D molecular model of a WWP2-inhibitor complex. These first generation WWP2 inhibitors provide a molecular framework for informing organic synthetic approaches to improve activity and selectivity.


Assuntos
Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , PTEN Fosfo-Hidrolase/metabolismo , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Solubilidade , Ubiquitina-Proteína Ligases/metabolismo
16.
J Med Chem ; 61(19): 8838-8846, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30160967

RESUMO

Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plântula/metabolismo , Proteínas de Arabidopsis/química , Domínio Catalítico , Corantes Fluorescentes/química , Ligantes , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica
17.
Proc Natl Acad Sci U S A ; 113(30): E4407-14, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27412861

RESUMO

Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.


Assuntos
Aminoácidos/genética , Transferases Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Avena/enzimologia , Avena/genética , Avena/metabolismo , Sequência Conservada/genética , Ciclização , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Triterpenos/química
18.
Angew Chem Int Ed Engl ; 54(49): 14763-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26474305

RESUMO

Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe(3+) site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe(3+) into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe(2+) oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe(2+) oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Ferro/química , Ferro/metabolismo , Transporte de Elétrons , Modelos Moleculares
19.
Angew Chem Weinheim Bergstr Ger ; 127(49): 14976-14980, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27478271

RESUMO

Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2.

20.
Mol Microbiol ; 92(3): 543-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24593252

RESUMO

The mucus layer covering the gastrointestinal tract is the first point of contact of the intestinal microbiota with the host. Cell surface macromolecules are critical for adherence of commensal bacteria to mucus but structural information is scarce. Here we report the first molecular and structural characterization of a novel cell-surface protein, Lar_0958 from Lactobacillus reuteri JCM 1112(T) , mediating adhesion of L. reuteri human strains to mucus. Lar_0958 is a modular protein of 133 kDa containing six repeat domains, an N-terminal signal sequence and a C-terminal anchoring motif (LPXTG). Lar_0958 homologues are expressed on the cell-surface of L. reuteri human strains, as shown by flow-cytometry and immunogold microscopy. Adhesion of human L. reuteri strains to mucus in vitro was significantly reduced in the presence of an anti-Lar_0958 antibody and Lar_0958 contribution to adhesion was further confirmed using a L. reuteri ATCC PTA 6475 lar_0958 KO mutant (6475-KO). The X-ray crystal structure of a single Lar_0958 repeat, determined at 1.5 Å resolution, revealed a divergent immunoglobulin (Ig)-like ß-sandwich fold, sharing structural homology with the Ig-like inter-repeat domain of internalins of the food borne pathogen Listeria monocytogenes. These findings provide unique structural insights into cell-surface protein repeats involved in adhesion of Gram-positive bacteria to the intestine.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Aderência Bacteriana , Limosilactobacillus reuteri/fisiologia , Muco/metabolismo , Adesinas Bacterianas/metabolismo , Cristalografia por Raios X , Técnicas de Inativação de Genes , Bactérias Gram-Positivas , Humanos , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/isolamento & purificação , Listeria monocytogenes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA